WLS/V-9水泵振動速度傳感器
電渦流傳感器的原理:
根據法拉第電磁感應原理,塊狀金屬導體置于變化的磁場中或在磁場中作切割磁力線運動時(與金屬是否塊狀無關,且切割不變化的磁場時無渦流),導體內將產生呈渦旋狀的感應電流,此電流叫電渦流,以上現象稱為電渦流效應。而根據電渦流效應制成的傳感器稱為電渦流式傳感器。
過程:
當被測金屬與探頭之間的距離發生變化時,探頭中線圈的Q值也發生變化,Q值的變化引起振蕩電壓幅度的變化,而這個隨距離變化的振蕩電壓經過檢波、濾波、線性補償、放大歸一處理轉化成電壓(電流)變化,*終完成機械位移(間隙)轉換成電壓(電流)。由上所述,電渦流傳感器工作系統中被測體可看作傳感器系統的一半,即一個電渦流位移傳感器的性能與被測體有關。
按照電渦流在導體內的貫穿情況,此傳感器可分為高頻反射式和低頻透射式兩類,但從基本工作原理上來說仍是相似的。電渦流式傳感器*大的特點是能對位移、厚度、表面溫度、速度、 應力、材料損傷等進行非接觸式連續測量,另外還具有體積小,靈敏度高,頻率響應寬等特點,應用很廣泛
測量振動的方式:
振動傳感器可用于機械中的振動和位移、轉子與機殼的熱膨脹量的長期監測;生產線的在線自動檢測和自動控制;科學研究中的多種微小距離和微小運動的測量等。振動傳感器廣泛應用于能源、化工、醫學、汽車、冶金,機器制造,科研教學等諸多領域,更主要的是應用于在防范地震災害領域的檢測上。
振動傳感器測量振動的方式很多,但總結起來,原理大多都采用以下三種:
1.機械式測量方法:將工程振動的變化量轉換成機械信號,再經機械系統放大后,進行測量、記錄,常用的儀器有杠桿式測振儀和蓋格爾測振儀,這種方法測量頻率較,精度差,但操作起來很方便。
2.光學式測量方法:將工程振動的變化量轉換為光學信號,經光學系統放大后顯示和記錄。象激光測振儀就是采用這種方法。
3.電測方法:將工程振動的變化量轉換成電信號,經線路放大后顯示和記錄。它是先將機械振動量轉化成電量,然后對其進行測量,根據對應關系,知道振動量的大小,這是目前應用得*廣泛的震動測量方法。
從上面三種測量方法可以看出,它們都是經過振動傳感器、信號放大電路和顯示記錄三個環節來完成的。
振動傳感器在機械接收原理方面,只有相對式、慣性式兩種,但在機電變換方面,由于變換方法和性質不同,其種類繁多,應用范圍也J其廣泛。在現代振動測量中所用的傳感器,已不是傳統概念上獨立的機械測量裝置,它僅是整個測量系統中的一個環節,且與后續的電子線路緊密相關。
由于振動傳感器內部機電變換原理的不同,輸出的電量也各不相同。有的是將機械量的變化變換為電動勢、電荷的變化,有的是將機械振動量的變化變換為電阻、電感等參量的變化。
一般說來,振動傳感器的電量并不能直接被后續的顯示、記錄、分析儀器所接受。因此針對不同機電變換原理的傳感器,須附以專配的測量線路。測量線路的作用是將振動傳感器的輸出電量*后變為后續顯示、分析儀器所能接受的一般電壓信號。
WLS/V-9水泵振動速度傳感器
湖北開航公司部分產品:
MLS-9H低頻振動傳感器
YD9230振動烈度傳感器
BSZ808AVS-2振動烈度傳感器
DPS-0.5-5-H-V低頻振動傳感器
HD-ST-6-A3振動傳感器
HD-ST-A3-B2振動傳感器
MCS-2MCS-II轉速表
HTJM-B-33軸振動變送器
HCSP-G1CA-200Y阻旋料位計
HCSP-G1CA-500Y阻旋料位計